
The Classical Model

Gauss-Markov Theorem, 

Specification, Endogeneity



Properties of Least Squares Estimators

• Here’s the model:

• For the case with 1 regressor and 1 constant, I showed some 
conditions under which the OLS estimator of the parameters of 
this model is unbiased, and I gave its variance.

• I asserted that unbiasedness goes through with more regressors.
• I asserted that the variance of the estimated parameters can be 

calculated with more regressors.
• It turns out that the OLS estimator is BLUE.

– There is a set of 6 assumptions, called the Classical Assumptions. If they are 
satisfied, then the ordinary least squares estimators is “best” among all linear 
estimators.

– “best” means minimum variance in a particular class of estimators.
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The Classical Assumptions

1. The regression model is linear in the coefficients, correctly 
specified, and has an additive error term .

2. The error term has zero population mean: E(εi) = 0.
3. All independent variables are uncorrelated with the error term : 

Cov(Xi,εi) =  0 for each independent variable Xi .
4. Errors are uncorrelated across observations: Cov(εi,εj) = 0 for two 

observations i and j (no serial correlation).
5. The error term has constant variance: Var(εi) = σ2 for every i (no 

heteroskedasticity).
6. No independent variable is a perfect linear function of any other 

independent variable (no perfect multi-collinearity ).
7. The error terms are normally distributed.  We’ll consider all the 

others, and see what we get.  Then, we’ll add this one.



Assumption 1: Linearity, Correct 

Specification, and Additive Error

• We’ve already discussed linearity in the coefficients.
• Remember that we wrote the regression model as:

Yi = E[Yi | Xi] + εi                                     (1)
• Assumption 1 says three things:
1. The regression model has an additive error term. That is, we can write the 

regression model like (1)
– That’s the additive error part. This is not very restrictive: we can alwayswrite the 

regression model this way if we define the error as εi = Yi - E[Yi | Xi] 
2. The regression is linear in parameters. That is, E[Yi | Xi] is really linear in 

parameters
– example: E[Yi | Xi] = β0 +  β1Xi + β2(Xi)

2

3. The regression is correctly specified. That is, we have the correct functional 
form for E[Yi | Xi], 

– E[Yi | Xi] is not only linear in parameters, but we have all the right X’s on the right 
hand side, we squared them if they should be squared, we took logarithms if they 
should be in logarithms, etc.



Assumption 2: E(εi)=0

• This is a pretty weak assumption
• All it says is that there is no expected error in the regression function.
• If we expecteda particular error value (e.g., if E(εi) = 5), then (part of) 

the error term would be predictable, and we could just add that to the 
regression model.

• Example: suppose Yi = β0 + β1Xi  + εi and E(εi) = 5. Then 

E(Yi|Xi) = E(β0 + β1Xi  + εi) = β0 + β1Xi  + E(εi) = β0 + β1Xi  + 5

We could just define a new intercept β0
* = β0 + 5 and a new error term 

εi
* = εi – 5. Then we have a new regression model:

Yi = β0
* + β1Xi  + εi*

that satisfies Assumption 2.



Assumption 3: Cov(Xi,εi) = 0 

• We need assumption 3 to be satisfied for all the independent variables Xi

• When assumption 3 is satisfied, we say Xi is exogenous.
• When assumption 3 is violated, we say Xi is endogenous.
• Why is endogeneity a problem? 
• Remember we can’t observe εi. 
• If Cov(Xi,εi) ≠ 0 and Xi is in our model, then OLS attributes variation in Yi to Xi that is 

really due to εi varying with Xi

• That is, Y moves around when εmoves around. Our estimator should not “explain” this 
variation in Y using X, because it is due to the error, not due to X.

• But if Cov(X,ε) ≠ 0, then when εmoves around, so does X.  We see X and Y moving 
together, and the least squares estimator therefore “explains” some of this variation in Y
usingX. But really the variation comes from ε.

• Consequently, we get a biased estimate of the coefficient on X, i.e. β, because it 
measures the effect of X and ε on Y.

• How do we know that assumption 3 is satisfied? We rely on economic theory(and some 
common sense) to tell us that our independent variables are exogenous (there are also 
some tests available, but they are not very convincing).



Unbiasedness

• If Assumptions 1 – 3 are satisfied, then the least squares estimator of the 
regression coefficients is unbiased.

• Suppose we have the simple linear regression: Yi = β0 + β1Xi + εi then we 
can write the least squares estimator of β1 as:
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Assumptions 4,5: 

Cov(εi,εj) = 0and Var(εi) = σ2

• If these assumptions are violated, we say the errors are serially correlated (violation of 
A4) and/or heteroskedastic(violation of A5).

• The least squares estimator is unbiasedeven if these assumptions are violated.
• But, it turns out there are more efficient estimators than least squares if the errors are 

heteroskedastic and/or serially correlated.
• Example of serial correlation: if ε1 > 0, then ε2 is more likely to be positive also.

– usually a problem in time-seriesapplications, e.g., where we model an economic variable 
(GDP, stock price, etc.) over time. 

– Example: Suppose there is a big negative shock (ε < 0) to GDP this year (e.g., oil prices rise). 
If this triggers a recession, we’re likely to see another negative shock next year.

• Example of heteroskedasticity: Var(ε) depends on some variable Z (which may or may 
not be in the model)

– Example: suppose we regress income (Y) on education (X). Although people with more 
education to have higher income on average, they also (as a group) have more variability in 
their earnings. That is, some people with PhD’s get good jobs & earn a lot, but some are “over-
qualified” for everything except Starbucks. So we see that highly educated people have a  high 
variance of earnings, as well as a high mean. In contrast, almost everyone that flunks out of 
high school earns very little. (low education, low variance of earnings) ... draw a picture of a 
more efficient estimator



Assumption 6: No perfect collinearity

• This is really a technical assumption.
• With perfect collinearity, one (or more) independent variables is a perfect linear 

function of others.
• Perfect collinearity is a problem, because the least squares estimator cannot 

separately attribute variation in Y to the independent variables.
– Example: suppose we regress weight on height measured in meters and height 

measured in centimeters.  How could we decide which regressor to attribute the 
changing weight to?

• The solution is just to exclude one of the (redundant) variables from the model.



The Gauss-Markov Theorem (GMT)

• GMT: when the classical Assumptions 1-6 are satisfied, then the least 
squares estimator     has the smallest variance of all linear unbiased 
estimatorsof βj, for j = 0,1,2,...,k.

• This is a pretty powerful theorem.
• Sometimes we say the least squares estimator is

BLUE : Best L inear UnbiasedEstimator
where “best” means most efficient. This is just a convenient way of 
remembering the Gauss-Markov Theorem (GMT).

• The GMT is a big reason we like least squares so much.
• What do we mean by a “linear” estimator? One that is linear in y (take a 

look at the formula for the least squares estimator).  Linear estimators are 
easy to compute.  Linearity also makes statistical properties simple if the 
errors are normal: linear functions of normal variables are normal.

• Is linearity restrictive? No, as it turns out.  The proof is complex, but you 
can show that any nonlinear estimator is biased for someerror probability 
distribution.  So the real “bite” of the GMT is unbiasedness, not linearity.
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Violating the Classical Assumptions

• We know that when these six assumptions are satisfied, the least
squares estimator is BLUE

• We almost always use least squares to estimate linear regression
models

• So in a particular application, we’d like to know whether or not the 
classical assumptions are satisfied
– if they’re not, then there is usually a “better” estimator available

• For the remainder of the semester, we’ll talk about
– what happenswhen the classical assumptions are violated
– how to test for violations
– what to do about it if we find a violation

• We’ll deal with the assumptions one-by-one, starting with Assumption 
1.



Violating Assumption 1

• Assumption 1 of the CLRM is that the regression function:
– is linear in the coefficients
– is correctly specified
– has an additive error term

• As we said already, the “additive error” part is a pretty weak assumption –
nothing really to worry about here

• We rely on economic theory (and maybe common sense) to tell us that the 
regression is (or is not) linear in the coefficients
– if it’s not, we can estimate a nonlinear regressionmodel; we’ll see some 

examples later in the semester, time permitting
• So we’ll begin by talking about specification errors: when our regression 

model is incorrectly specified



Specification

• Every time we write down a regression model (and estimate it!) we 
make some important choices:
– what independent variables belong in the model?
– what functional form should the regression function take (i.e., 

logarithms, quadratic, cubic, etc.)?
– what kind of distribution should the errors have?

• Usually, we look to economic theory (and some common sense!) to 
guide us in making these decisions.

• The particular model that we decide to estimate is the culmination of 
these choices: we call it a specification
– a regression specification consists of the model’s independent 

variables, the functional form, and an assumed error distribution



Specification Error

• It is convenient to think of there being a right answer to each of the 
questions on the preceding slide

• That is, a correct specification
• Sometimes we call it the data generating process (DGP)

– the DGP is the true (unknown) model that “generates” the data we observe 
• The DGP is a population concept: we never observe it
• One way to think about regression analysis is that we want to learn about 

the DGP
• A regression model that differs from the DGP is an incorrect specification
• An incorrect specification arises if we make an incorrect choiceof:

– independent variables to include in the model
– functional form
– error distribution

• We call an incorrect specification a specification error



What is functional form, and why does it 

matter?

• As always, our regression model is:
Yi = E[Yi | X1i ,X2i ,...,Xki] + εi

• Having chosen the independent variables X1i ,X2i ,...,Xki that will be included in 
the model, we need to decide on a shapefor the regression function 
E[Yi | X1i ,X2i ,...,Xki]
– should it pass through the origin? or should it have a non-zero intercept? should the 

intercept be the same for all observations? or are there distinct groups of 
observations (e.g., men/women, before/after a policy, etc.) that have a separate 
intercept?

– do you think the relationship between Xji and Yi is a straight line? a curve? is it 
monotone? should the slope be the same for every observation? or are there distinct 
groups of observations that have separate slopes?

• A functional form is a mathematical specification of the regression function 
E[Yi | X1i ,X2i ,...,Xki] that we choosein response to these questions.

• Different functional forms may give very different “answers” about the 
marginal effects of X on Y – and typically different predictions too (draw some 
pictures)

• As always, let economic theory and common sense be your guide.



Should the Model Include an Intercept?

• The short answer: yes, always.
• Why?
• Even if theory tells you that the regression function 

should pass through the origin (i.e., theory tells you that 
when all the X are zero, then Y is zero also) it is better to 
estimate a zero intercept than to force the intercept to 
be zero.

• Why is this better?In case the theory is wrong.
• If leave out the intercept, but the true intercept (i.e., of 

the DGP) turns out not to be zero, you can really screw 
up your estimates of the slopes (draw a picture)
– For example, firm output depends on inputs, zero gets zero.  But, 

are there threshold input levels to get positive output?



The Linear Functional Form

• The simplest functional form arises when the independent 
variables enter linearly:

Yi = β0 + β1X1i + β2X2i + εi
• Why might you choose this form?

– if theory tells you that the marginal effect of X on Y is a constant:
i.e., the same at every level of X

equivalently, the regression function is a straight line (has a constant 
slope).

– if theory tells you that the elasticity of Y with respect to X is not a 
constant:

– if you don’t know what else to do (but a polynomial is better)
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The Polynomial Functional Form

• A flexible alternative to the linear functional form is a polynomial: one or 
more independent variables are raised to powers other than one, e.g., 

Yi = β0 + β1X1i + β2(X1i)
2 + β3X2i + εi                   (model 1)

Yi = β0 + β1X1i + β2(X1i)
2 + β3(X1i)

3 + β4X2i + εi (model 2)
• Why would you choose a polynomial functional form?

– if theory tells you that the marginal effect of X on Y is a not constant: 
i.e., it changes with the level of X (the regression function is a curve)

(model 1)

– the elasticities are also not constant:

– if you don’t know what else to do (polynomial specifications are very 
flexible – draw some pictures).

• Caveat: difficult to interpret the individual regression coefficients
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The Double-Log Functional Form

• Maybe the most common specification that is linear in parameters but non-linear in the 
variables:

lnYi = β0 + β1lnX1i + β2lnX2i + εi
where “ln” is the natural logarithm

• Why might you choose this form?
– if theory tells you that the marginal effect of X on Y is a not constant: i.e., 

changes with the level of X (the regression function is a curve)

– if theory tells you that the elasticity of Y with respect to X is constant (this is the main 
reason for using this form):

• In the double-log model, the β’s measure elasticities: the % change in Y for a 1% 
change in X (holding other independent variables constant)

• Implies a smooth but nonlinear relationship between X and Y
• Don’t forget ln is only defined for positive numbers! You need to make sure that X and 

Y are not zero & not negative.
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The Semi-log Functional Form

• There are two versions of this one:
lnYi = β0 + β1X1i + β2X2i + εi (model 1)
Yi = β0 + β1lnX1i + β2X2i + εi (model 2)

• That is, some but not all variables are in natural logarithms
• We use this kind of functional form very often – a very common 

application is when the variable being logged has a very skewed 
distribution : taking the logarithm compresses extreme values

• Neither the marginal effect nor the elasticity is constant
• The coefficients in model 1 have a very useful interpretation: β1

measures the percentagechange in Yi for a one unit change in Xi
– very common in instances where changes in Y occur on a percentage 

basis, i.e., where we want to model growth rates
– example: in model 1, if Y is a person’s salary and X1 is years of 

education, then β1 measures the % increase in salary associated with 
acquiring one more year of education



Specification Error: choosing the wrong 

functional form

• As always, you should choose a functional form based on economic theory 
andcommon sense

• You should avoid choosing functional form based on model fit
– i.e., don’t simply choose a functional form that gives the highest R2, or adjusted-R2

• Why? 
• Most importantly: because it ignores economic theory and common sense
• Note you cannot compare R2 or adjusted-R2 across specifications with 

different functional forms for the dependent variables (e.g., Y vs. lnY)
– Changing the dependent variable changes TSS. This makes the comparison meaningless.

• the best-fitting functional form might be “wrong” (i.e., different from the 
DGP)

– just because it fits well in this sample, doesn’t mean it’s “right” – it might fit badly in 
another sample (draw some pictures)

– For example, consider earnings regressed on age and age-squared, using only young 
people.  It might predict negative earnings for old people!



Dummy Variables

• A dummy variable is a variable that takes value 0 or 1
• Usually, we use dummy variables to indicate the presence or absence of 

a characteristic
• Dummy variable examples: 

– Mi = 1 if person i is a man
Mi = 0 if person i is a woman

– Ui = 1 if person i is a member of a union
Ui = 0 if person i is not a member of a union

– Xi = 1 if firm i operates in an export market
Xi = 0 if firm i does not operate in an export market

• We use dummy variables all the time to allow different groups of 
observations to have different slopes and/or intercepts



Intercept Dummies

• The most common use of dummy variables is to allow different regression intercepts for 
different groups of observations

• Example:
Wi = β0 + β1EDi + β2Fi + εi

where 
Wi is person i’s hourly wage 
EDi is person i’s education (years)
Fi = 1 if person i is female
Fi = 0 if person i is male

then for females (Fi = 1), the regression model is:
Wi = β0 + β1EDi + β2 + εi            (intercept is β0 + β2)

and for males (Fi = 0), the regression model is
Wi = β0 + β1EDi + εi                        (intercept is β0)

• Notice that the slopeof the two regression models is the same, but the intercept differs 
(draw a picture)

– the model says that education has the same marginal effect on men’s and women’s wages, but 
that for a given level of education, the average wage of men and women is different differs 
by β2 dollars

• What if the dependent variable was lnWi?
• Other examples?



The Dummy Variable Trap

• Notice that in the previous example, we didn’t include a second dummy 
variable for being a man, i.e., 

Wi = β0 + β1EDi + β2Fi + β3Mi + εi
where 

Wi is person i’s hourly wage 
EDi is person i’s education (years)
Fi = 1 if person i is female
Fi = 0 if person i is not female (is male)
Mi = 1 if person i is male 
Mi = 0 if person i is not male (is female)  

• The reason: this model violates Assumption 6 of the CLRM (no perfect 
collinearity) because Mi = 1 – Fi, i.e., Mi is an exact linear function of Fi.
– Mi is redundant – it contains no information that isn’t already in Fi

– there is no way to distinguish between the effect of Mi and Fi on Wi

• WE ALWAYS HAVE ONE LESS DUMMY VARIABLE THAN 
CONDITIONS (CATEGORIES)!
– if you violate this (fall into the “dummy variable trap”), you violate Assumption 6 

of the CLRM



More than 2 categories

• Using dummy variables to indicate the absence/presence of conditions 
with more than 2 categories is no problem – just create more dummies 
(one fewer than the number of categories)

• Example: dummies for a immigrant cohort
– COHORT takes one of eight values (1950s, 1960s, 1970s, 1980s, 

1990s, 2000s, temporary, and Canadian-born)
– We could create a set of cohort dummies C:

FIFTIES = 1 if COHORT =1, and 0 otherwise
SIXTIES = 1 if COHORT =2, and 0 otherwise 
SEVENTIES= 1 if COHORT =3, and 0 otherwise

– EIGHTIES = 1 if COHORT =4, and 0 otherwise
– NINETIES = 1 if COHORT =5, and 0 otherwise
– NOUGHTS = 1 if COHORT =6, and 0 otherwise
– TEMPORARIES = 1 if COHORT =7, and 0 otherwise
– CANADIAN-BORN is the omitted category defined by COHORT=8
– Our regression is   EARNINGSi = β0 + β1FIFTIESi + β2SIXTIESi +…

+β7TEMPSi + (other stuff) +εi



Slope Dummy Variables

• We can also use dummy variables to allow the slope of the regression function 
to vary across observations

• Example: our wage equation with male/female dummies
– suppose we think the returns to education(the marginal effect of another year of 

education on wage) is different for men than for women, but that the intercepts are 
the same

– we could estimate the regression model:
Wi = β0 + β1EDi + β2EDiFi + εi

– for women(Fi = 1) the regression model is            Wi = β0 + (β1 +β2 )EDi + εi 
while for men (Fi = 0) the model is                        Wi = β0 + β1EDi + εi

– draw a picture
• all we do is introduce a “new” independent variable EDiFi that is the product 

of the EDi variable and the Fi variable (i.e., EDi times Fi)
– we call this variable the interaction of education and gender (the “Female” dummy)

• of course, we can use dummies to allow the slopes AND the intercept to vary 
....

• do another example, and draw some pictures



Choosing the Independent Variables

• We’ll begin our discussion of specification errors by talking about the 
choice of which independent variables to include in the model

• There are several kinds of errors we can make:
– we can leave out (omit) one or more “important” independent variables 

– ones that shouldbe in the model
– we can include “unimportant” (irrelevant) independent variables – ones 

that should notbe in the model
– we can abuse the tools we have and choose a specification that fits the 

data well, or confirms what we hoped to find without relying on 
theory (or common sense) to specify the model

• We’ll discuss the consequences of each of these kinds of specification 
error today, and one “omnibus” test we can use to detect possible 
specification error



Omitted Variables

• Suppose the true DGP is:
Yi = β0 + β1X1i + β2X2i + εi

but we incorrectly estimate the regression model:
Yi = β0

* + β1
*X1i + εi*

– example: Y is earnings, X1 is education, and X2 is “work ethic” – we 
don’t observe a person’s work ethic in the data, so we can’t include it 
in the regression model

• That is, we omit the variable X2 from our model
• What is the consequence of this?
• Does it mess up our estimates of β0 andβ1?

– it definitely messes up our interpretation of β1. With X2 in the model, 
β1 measures the marginal effect of X1 on Yholding X2 constant.  We 
can’t hold X2 constant if it’s not in the model.

– Our estimated regression coefficients may be biased
– The estimated β1 thus measures the marginal effect of X1 on Y without 

holding X2 constant. Since X2 is in the error term, the error term will 
covary with X1 if X2 covaries with X1 .



Omitted Variables May Cause Bias

The estimated parameter is biased, with bias linear in the true parameter on 

the left-out variable, and the covariance of the left-out variable with the 

included variable.
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Omitted Variables

• The formula is:

• Uncorrelated missing regressors don’t cause 

bias.

• Missing regressors with zero coefficients don’t 

cause bias.

• Correlated missing regressors with nonzero 

coefficients cause bias.
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Omitted Variable Bias

• It’s easy to see why leaving X2 out of the model biases our estimate of β1

• Because the true model is: Yi = β0 + β1X1i + β2X2i + εi
but we estimate: Yi = β0

* + β1
*X1i + εi

*

we can see that the error term in the mis-specified model is: εi
* = β2X2i + εi

• So, if X1 and X2 are correlated, then Assumption 3 of the CLRM is violated in the 
mis-specified model: X1 is correlated with εi

*

– if X2 changes, so do εi
*, X1 andY

– but all we can seeis X1 andY changing – and we incorrectly attribute variation 
in Y to X1 that is really due to X2

• That is, β1 measures the effect of X1 and (some of) the effect of X2 on Y
• Consequently, our estimate of β1 is biased
• Back to our example: Imagine the true β1 > 0 and β2 > 0 so that more educated 

workers earn more, and so do workers with a stronger work ethic. Imagine also 
that Cov(X1,X2) >  0, so that workers with a stronger work ethic also acquire more 
education on average.  When we leave work ethic out of the model, β1

* measures the 
effect of education and work ethic on earnings.

• Only if we are very lucky and Cov(X1,X2) = 0, does leaving X2 out of the model not 
bias our estimate of β1



Is the bias positive or negative?

• We know that if Cov(X1,X2) ≠ 0, and we omit X2 from the model, our 
estimate of β1 is biased:

• But is the bias positive or negative? That is, can we predict whether:

• In fact, you can show that:
where α1 is the slope coefficient from the auxiliary regressionof X2 on X1 : 

X2i = α0 + α1X1i + ui
where ui is a classical error term

• Note that α1 has the same sign as Cov(X1,X2)
• Back to our example: we assumed β2 > 0 (people with a stronger work ethic 

earn more), and Cov(X1,X2) > 0 (people with a stronger work ethic acquire 
more education).  Because Cov(X1,X2) > 0, we know that α1 > 0 also. 
Therefore:

so we overestimate the effect of education on earnings – we measure the 
effect of having more education and having a stronger work ethic.

11]ˆ[ ββ ≠E

?   ]ˆ[or    ]ˆ[ 1111 ββββ <> EE

1211]ˆ[ αβββ +=E

11211]ˆ[ βαβββ >+=E



Detecting and Correcting Omitted Variable 

Bias

• How do you know you’ve omitted an important variable?
– your best guide here is common sense and economic theory
– beforeyou specify and estimate the regression model, think hard about what 

should be in the model – what common sense and economic theory tell you are 
important predictors of Y

– after you specify the regression but before you estimate it, predict the sign of 
the regression coefficients.  Then compare the actual sign of the estimated 
regression coefficients with the predicted signs. If any have the “wrong” sign, 
you may have omitted something correlated with that independent variable.

• How do you correct for omitted variable bias?
– that’s “easy” – just add the omitted variable to your model!
– of course you probably already would have done so if you could ... (like “work 

ethic” – it’s hard to measure)
– maybe you can include a “proxy” for the omitted variable instead – something 

highly correlated with the omitted variable (e.g., use number of sick days at 
work as a proxy for work ethic, or an IQ score as a proxy for intelligence)

– Maybe you can correct for the bias using instruments (more later)



Including Irrelevant Variables

• What happens if we include an independent variable in our regression that 
doesn’t belong there?

• Suppose the true DGP is:
Yi = β0 + β1X1i + εi

but we the model we estimate is:
Yi = β0

* + β1
*X1i + β2

*X2i + εi
*

• We see that the error in the mis-specified model is εi
* = εi - β2

*X2i
• If X2 is really irrelevant, then β2

* = 0 and everything is ok:
– our estimates of β0 andβ1 will be unbiased
– so will our estimate of β2 (we expect it to be zero)

• The only cost of including an irrelevant independent variable is that we lose a 
degree of freedom:
– we should expect adjusted Rsquared (Rbar-squared) to decrease
– we get less precise estimates of all the other regression coefficients (standard errors 

get bigger, t-stats are closer to zero so we’re less likely to reject any hypothesis)



Data Mining

• At the end of the day, it is up to the econometrician to decide what independent 
variables to include in the model

• There is a temptation to choose the model that fits “best,” or that tells you what 
you want to hear

• Resist this temptation! Let economic theory and common sense be your guide!
• An example of what not to do: data mining

– we could estimate lots and lots and lots of “candidate” regression specifications, and 
choose the one whose results we like most

– the problem: you’ll discard the specifications where [1] coefficients have the 
“wrong” sign (not wrong from a theoretical standpoint, but “wrong” in the sense 
that you don’t like the result), and/or [2] t-stats are small (you discard specifications 
where variables you care about are statistically insignificant)

– so you end up with a regression model where the coefficients you care about have 
big t stats and the “right” sign.

– How confident can you really be of your result if you had to throw away lots of 
“candidate” regressions? Do we really learn anything about the DGP?

• do your coefficients really have the right sign?
• are the t stats really big?



Other examples of bad practice

• There are lots of other ways to “cheat” when choosing a specification
• Stepwise regression: start with a list of “candidate” independent 

variables. Add them one at a time to the regression, and only keep them 
in the model if R2 increases by a pre-specified amount.
– problems: ignores economic theory (and common sense); if the 

independent variables are highly correlated, it can produce garbage
• Sequential Specification Search: start with a “big” model (one that 

includes lots of independent variables). Sequentially add or drop 
independent variables until you end up with a “good” regression (one 
that you like)
– problems: like data mining, given that you had to throw away lots of 

“bad” regressions, how confident can you be of your results? If you drop 
variables because they have low t stats, you introduce omitted variable bias 
into other coefficients if they are correlated with the dropped variable.



The RESET test

• A common omnibus test for specification error is Ramsey’s Regression Specification 
Error Test (RESET). It works as follows.

1. Estimate the regression you want to test. Suppose it has k independent variables. Call 
this model 1.

2. Compute the predicted values (Y-hat) from model 1.
3. Regress Y on the k independent variables and on the square of Y-hat, the cube of Y-

hat, etc. (an Mth-order polynomial in Y-hat. You choose M) Call this model 2.
4. Compare the results of the two regressions using an F-test. The test statistic is:

5. If the test statistic is “big” (bigger than a critical value) then reject the null hypothesis 
of correct specification

• Intuition: if the model is correctly specified, then all those functions of Y-hat 
shouldn’t help to explain Y (their estimated coefficients should be statistically 
insignificant).  The test statistic is “big” if RSS (the part of variation in Y that we 
don’t explain) is much bigger in model 1 than model 2 – meaning all those functions 
of Y-hat helped a lot to explain variation in Y.

• Problem: if you reject the null of correct specification, the test doesn’t tell you what 
the specification error is, or how to fix it.

• This test detects heteroskedasticity, which may be caused by misspecification.
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