The Classical Model

Gauss-Markov Theorem,
Specification, Endogeneity



Properties of Least Squares Estimators

Here’'s the model:
Y, =L, + BXy + B, Xy + B X5+ [ X +E

For the case with 1 regressor and 1 constant,Wwatidome
conditions under which the OLS estimator of theap@aters of
this model is unbiased, and | gave its variance.

| asserted that unbiasedness goes through with rmagressors.

| asserted that the variance of the estimated peteasican be
calculated with more regressors.

It turns out that the OLS estimator is BLUE.

— There is a set of 6 assumptions, calledGlessical Assumptions|f they are
satisfied, then the ordinary least squares estimadbest” among all linear
estimators.

— “best” meansninimum variance in a particular class of estimators.




The Classical Assumptions

The regression modelligear in the coefficients correctly
specified and has aadditive error term.

The error term hamero population mean E(g;) = 0.

All independent variables avacorrelated with the error term:
CovX,e) = O for each independent variable

Errors are uncorrelated across observatiBos(e; ¢;) = 0 for two
observations andj (no serial correlation).

The error term has constant varianéar(s,) = o2 for everyi (no
heteroskedasticity.

No independent variable igarfect linear function of any other
Independent variable (meerfect multi-collinearity ).

The error terms are normally distributadfe’ll consider all the
others, and see what we get. Then, we’ll adddhes



Assumption 1: Linearity, Correct
Specification, and Additive Error

We’'ve already discussed linearity in the coeffitsen

Remember that we wrote the regression model as:
Y =E[Yi| X] +¢ (1)

Assumption 1 says three things:
The regression model has an additive error téfhat is, we can write the
regression model like (1)

— That’s the additive error part. This is not vergtreetive: we caralwayswrite the

regression model this way if veefinethe error as;, =Y, - E[Y; | X]

The regression is linear in parameterfat is,E[Y, | X] is really linear in
parameters

- exampleE[Y; | X] = o+ BXi+ By(%)?
The regression is correctly specifiddhat is, we have the corrdcinctional
form for E[Y, | X],

— E[Y; | X] is not only linear in parameters, but we havetal rightX’s on the right
hand side, we squared them if they should be squasetook logarithms if they
should be in logarithms, etc.



Assumption 2: E(g;)=0

This is a pretty weak assumption
All it says Is that there is no expected erroma tegression function.

If we expecteda particular error value (e.g.,HEe;) = 5), then (part of)
the error term would be predictable, and we coud add that to the
regression model.

Example: sUuppos¥ = 5, + f, X + ¢ andE(g;)) = 5. Then

ECYi[X:) = E(Bo + foXi + &) =y + prXi + E(g) =fo+ prX + 5

We could just define a new intercgfgt = 5, + 5 and a new error term
& = g —>5. Then we have a new regression model:

o Yi=PBy +BK &
that satisfies Assumption 2.



Assumption 3: Cov(X,€;) =0

We need assumption 3 to be satisfieddibthe independent variabl&s
When assumption 3 is satisfied, we ¥ais exogenous.

When assumption 3 is violated, we s&ys endogenous.

Why is endogeneity a problem?

Remember we can’t obserye

If Cou(X;,&;) # 0 andX; is in our model, then OLS attributes variatior¥jro X; that is
really due tg; varying with X,

That is,Y moves around whesmoves around. Our estimatsimould not“explain” this
variation inY usingX, because it is due to the error, not duX.to

But if CoXe) # 0, then wher moves around, so do&s We seeX andY moving
together, and the least squares estimator theréfgpdains” some of this variation ivf
usingX. But really the variation comes fram

Consequently, we get a biased estimate of theicmzff onX, i.e. S, because it
measures the effect &fand e onY.

How do we know that assumption 3 is satisfied? @ eneconomic theory(and some
common sense) to tell us that our independentblagaare exogenous (there are also
some tests available, but they are not very coimj)c



Unbiasedness

 If Assumptions 1 — 3 are satisfied, then the leastregusstimator of the
regression coefficients imbiased

* Suppose we have the simple linear regresMon;g, + 5, X + ¢ then we
can write the least squares estimatgf,ais:

N — Zi (Xi _X)(Yi _Y) _ Zi (Xi _X)(ﬁo"'ﬁlxi té —,80—,81)?—5)

S 31 (S > (x %]
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( - ) Z:(Xi_x)2 Zi(Xi—)?)z
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Assumptions 4,5:
CoVe;¢) = Oand Var(e) =0

If these assumptions are violated, we say these@serially correlated (violation of
A4) and/orheteroskedastiqviolation of AS).

The least squares estimatourtbiasedeven if these assumptions are violated.

But, it turns out there amore efficient estimators than least squares if the errors are
heteroskedastic and/or serially correlated.

Example of serial correlation: ¢ > 0, there, is more likely to be positive also.

— usually a problem itime-seriesapplications, e.g., where we model an economi@béi
(GDP, stock price, etc.) over time.

— Example: Suppose there is a big negative shock() to GDP this year (e.g., oil prices rise).
If this triggers a recession, we're likely to se®ther negative shock next year.

Example of heteroskedasticityar(e) depends on some variatdéwhich may or may
not be in the model)

— Example: suppose we regress incoivjeofy educationX). Although people with more
education to have higher income on average, tlsgy(ak a group) have more variability in
their earnings. That is, some people with PhD’sggetd jobs & earn a lot, but some are “over-
qualified” for everything except Starbucks. So we gt highly educated people have a high
variance of earnings, as well as a high mean. mtrast, almost everyone that flunks out of
high school earns very little. (low education, leariance of earnings) draw a picture of a
more efficient estimator



Assumption 6: No perfect collinearity

This is really a technical assumption.

With perfect collinearity, one (or more) indepenteariables is a perfect linear
function of others.

Perfect collinearity is a problem, because thetleaisares estimator cannot
separately attribute variation ¥ito the independent variables.

— Example: suppose we regress weight on height medsumeters and height
measured in centimeters. How could we decide wiighessor to attribute the
changing weight to?

The solution is just to exclude one of the (redumpaariables from the model.



The Gauss-Markov Theorem (GMT)

GMT: when the classical Assumptions 1-6 are satistlesh) the least
squares estimatgr ~ has the smallest variance lofesr unbiased
estimatorsof g, tor ] = 0,1,2,.. k.

This is a pretty powerful theorem.

Sometimes we say the least squares estimator is

BLUE : BestL inearUnbiasedestimator

where “best” means most efficient. This is just a convenay of
remembering the Gauss-Markov Theorem (GMT).

The GMT is a big reason we like least squares so much.

What do we mean by a “linear” estimator? One thhhear in y (take a
look at the formula for the least squares estimationear estimators are
easy to compute. Linearity also makes statisticglgntees simple if the
errors are normal: linear functions of normal vaealdre normal.

Is linearity restrictive? No, as it turns out. Tgreof is complex, but you
can show that any nonlinear estimator is biaseddareerror probability
distribution. So the real “bite” of the GMT is unbidsess, not linearity.



Violating the Classical Assumptions

We know that when these six assumptions are satigie least
sguares estimator is BLUE

We almost always use least squares to estimatar Iregression
models

So in a particular application, we’d like to known&ther or not the
classical assumptions are satisfied

— if they’re not, then there is usually a “better’igsitor available

For the remainder of the semester, we’ll talk about

— what happenswhen the classical assumptions are violated
— how to testfor violations
— what to do about itif we find a violation

We’'ll deal with the assumptions one-by-one, stgrtith Assumption
1.



Violating Assumption 1

Assumption 1 of the CLRM is that the regression fumctio
— islinear in the coefficients
— is correctly specified
— has amadditive error term

As we said already, the “additive error” part is afyreteak assumption —
nothing really to worry about here

We rely on economic theory (and maybe common seage)l us that the
regression is (or is not) linear in the coefficients

— if it's not, we can estimater@onlinear regressionmodel; we’ll see some
examples later in the semester, time permitting

So we’ll begin by talking abowgpecification errors when our regression
model isincorrectly specified



Specification

* Every time we write down a regression model (arnonede it!) we
make some important choices:
— what independent variables belong in the model?
— what functional form should the regression functidketé.e.,
logarithms, quadratic, cubic, etc.)?
— what kind of distribution should the errors have?
e Usually, we look to economic theory (and some comigense!) to
guide us in making these decisions.
* The particular model that we decide to estimataasculmination of
these choices: we call itspecification

— aregression specification consists of the model’s inukbgre
variables, the functional form, and an assumed erstribution



Specification Error

It is convenient to think of there beingight answer to each of the
guestions on the preceding slide

That is, ecorrect specification
Sometimes we call it th@ata generating process (DGP)

— the DGP is thérue (unknown) model that “generates” the data we observe
The DGP is a population concept: we never observe it

One way to think about regression analysis is that am Yo learn about
the DGP

A regression model that differs from the DGP israiorrect specification
An incorrect specification arises if we makeiacorrect choiceof:
— Independent variables to include in the model

— functional form
— error distribution

We call an incorrect specificationspecification error



What is functional form, and why does it
matter?

As always, our regression model is:
Yi = E[Y; | Xy, X500 %l + &
Having chosen the independent varial{gsXx,; ,..., % that will be included in
the model, we need to decide oslapefor the regression function
ELY; | Xgi %5150 %]
— should it pass through the origin? or should itehawnon-zero intercept? should the
intercept be the same for all observations? othames distinct groups of

observations (e.g., men/women, before/after a poditc.) that have a separate
Intercept?

— do you think the relationship betwek¥pandy; is a straight line? a curve? is it
monotone? should the slope be the same for evegnadtion? or are there distinct
groups of observations that have separate slopes?

A functional form is a mathematical specification of the regressioittion
ELY; | X{,%,-.., %] that wechoosein response to these questions.

Different functional forms may give very differef@nswers” about the
m_argina)l effects oK onY — and typically different predictions too (draw some
pictures

As always, let economic theory and common sens@beguide.



Should the Model Include an Intercept?

The short answeyes always
Why?

Even if theory tells you that the regression fumcti

should pass through the origin (i.e., theory tgdla that

when all theX are zero, thelY Is zero alsojt is better to

gstimate a zero intercept than to force the interqs to
e zero.

Why Is this better™ case the theory is wrong.

If leave out the intercept, but threie intercept (i.e., of
the DGP) turns outot to be zero, you can really screw
up your estimates of the slopesgw a picture)

— For example, firm output depends on inputs, zete gero. But,
are there threshold input levels to get positivgpot?



The Linear Functional Form

» The simplest functional form arises when the inteieat
variables entelinearly:

Yi = fot prXit BoXoi t g
 Why might you choose this form?

— if theory tells you that thenarginal effect of X onY is aconstant:
l.e., the same at every level %f

aY, oY,
=p and ——=/,
| X, ax
elquw;;tlently, the regressmn function is a stralgtd (has a constant
slope).

— if theory tells you that thelasticity of Y with respect taX is not a
constant
_0Y Xy

— aY| X1| — X_Z
Ty x, X, Y ,81 d v, X, Y 5o Y

— if you don’t know what else to do (but a polynomsbetter)




The Polynomial Functional Form

» A flexible alternative to the linear functional foris apolynomial: one or
more independent variables are raised to powegs tithn one, e.qg.,
Y; = pot prXy t IBZ(XL)Z t 3Xoi t g (mOde| 1)
Y Bo + BrXai + BaoAXp)? ﬁs(xu) - PaXoi t & (model 2)
« Why would you choose a polynomial functional form?

— if theory tells you that thenarginal effect of X onY is anot constant:
l.e., it changes with the level &f(the regression function is a curve)

GY aY.
= p,+25, X, and L= model 1
— theelasticitiesare also not constant:
aY, X1 X Y. X.. X
i +2 X- 1 and — i 2i — 2
Ny x, = X, Y ( L T 25, Xy Y Ty x, X, Y Bs v

— if you don’t know what else to do (polynomial sgetions arevery
flexible — draw some picture$.

o Caveat: difficult to interpret the individual regseon coefficients



The Double-Log Functional Form

Maybe the most common specification that is linegrarameters but non-linear in the
variables:
INY; = By + f1InXy; + foInXs +
where “In” is the natural logarit m
Why might you choose this form?
— if theory tells you that thenarginal effectof X onY is anot constant:i.e.,
changes with the level of (the regression function is a curve)

oY; aY; adlnY, dInX; _ 1 alnY, dIn X, y Y,
e TV

0X4 BInY olIn X, 0X; BInYlaY oln X, 0X; Xy
— if theory tells you that thelast|C|ty of YW|th respect tc)( IS constant (thls Is the main
reason for using this form):
aYl Xll Y Xll

Ty x, :071,7, =0 X, Y =5

In the double-log model, ths measure eIa§t|C|t|es the % chang&’ifor a 1%
change inX (holding other independent variables constant)

Implies a smooth but nonlinear relationship betw¢amdyY

Don’t forget In is only defined for positive numkeéiyou need to make sure thaand
Y are not zero & not negative.




The Semi-log Functional Form

There are two versions of this one:
INY; = fo+ p1X4i + BoXoi + & (model 1)
Yi = fot falnXy; + X + & (model 2)
That is, some but not all varlables are in natlogdrithms

We use this kind of functional form very often —exrycommon
application is when the variable being logged hasrgskewed
distribution : taking the logarithm compresses extreme values

Neither the marginal effect nor the elasticity amstant

The coefficients in model 1 have a very usefulnmtetation:,
measures thpercentagechange inY; for aone unitchange inX

— Very common in instances where changeséatcur on a percentage
basis, i.e., where we want to modebwth rates

— example: in model 1, if Y is a person’s salary anesxears of
education, the®, measures the % increase in salary associated with
acquiring one more year of education



Specification Error: choosing the wrong
functional form

As always, you should choose a functional form basestonomic theory
andcommon sense

You shouldavoid choosing functional form based on model fit
— i.e., don’t simply choose a functional form thateg the highe$®?, or adjusted??
Why?
Most importantly: because it ignores economic theory and common sense
Note youcannotcompareR? or adjusted=? across specifications with

different functional forms for the dependent varale.g.)Y vs. InY)
— Changing the dependent variable changes TSS. Tdkesrthe comparison meaningless.

the b)est-fitting functional form might be “wrong’€i, different from the
DGP

— just because it fits well in this sample, doesngamit’s “right” — it might fit badly in
another sampladfaw some pictureg

— For example, consider earnings regressed on agagaidquared, using only young
people. It might predict negative earnings for pémple!



Dummy Variables

A dummy variable is a variable that takes value O or 1

Usually, we use dummy variables to indicate thesg@nee or absence of
a characteristic
Dummy variable examples:
— M, = 1if person is a man
M., = O if personi is a woman

— U, = 1 if person is a member of a union
U. = O if person is not a member of a union

— X = 1 if firm i operates in an export market
X. = 0 if firm i does not operate in an export market

We use dummy variabledl the time to allow different groups of
observations to have different slopes and/or ief#<



Intercept Dummies

The most common use of dummy variables is to afldferent regression intercepts for
different groups of observations

Example:
W = Sy + B1ED, + BoF; + &
where
W is person’s hourly wage
ED IS persorni’s education (years)
F, = 11if person is female
F O if person is male
then for femalesﬂ 1), the regression model is:
W = g,+ BED. + S, + ¢ (intercept isB, + 5,)
and for malesF( 0), the regressmn model is
W = p,+ BED, + ¢ (intercept i)

Notice that theslopeof the two regression models is the same, butnieedept differs
(draw a picture)

— the model says that education has the same maggfeat on men’s and women’s wages, but
that for a given level of education, taeerage wage of men and women is differentiffers
by S, dollars

What if the dependent variable wag\f
Other examples?



The Dummy Variable Trap

Notice that in the previous example, we didn’'t ut# a second dummy
variable for being a man, i.e.,
W, = fio + BED, + BoF, + oM, + &
where
W IS person’s hourly wage
ED. is person’s education (years)
1 if person is female
O if person is not female (is male)
M;= 1 if person is male
M O if person is not male (is female)
The reason this model violates Assumption 6 ofGh&M (no perfect
collinearity) becaus®l,= 1—-F, i.e.,M, is anexactlinear function ofF,.

— M; is redundant — it contain® information that isn't already irf;
— there is no way to distinguish between the effédflaandF, on W,
WE ALWAYS HAVE ONE LESS DUMMY VARIABLE THAN

CONDITIONS (CATEGORIES)!

— if you violate this (fall into the “dummy variabteap”), you violate Assumption 6
of the CLRM

F =1
F=0



More than 2 categories

Using dummy variables to indicate the absence/poesef conditions
with more than 2 categories is no problem — jusaterenore dummies
(one fewer than the number of categories)

Example: dummies for a immigrant cohort

COHORT takes one of eight values (1950s, 1960s, 199895,
1990s, 2000s, temporary, and Canadian-born)

We could create a set of cohort dummies C:
FIFTIES =1 if COHORT =1, and 0 otherwise
SIXTIES = 1 if COHORT =2, and 0 otherwise
SEVENTIES= 1 if COHORT =3, and 0 otherwise

EIGHTIES = 1 if COHORT =4, and 0 otherwise

NINETIES = 1 if COHORT =5, and 0 otherwise

NOUGHTS =1 if COHORT =6, and 0 otherwise

TEMPORARIES =1 if COHORT =7, and 0 otherwise
CANADIAN-BORN is theomitted categorydefined by COHORT=8

Our regressionis EARNINGS 4, + A,FIFTIES + 8,SIXTIES+...
+B TEMPS*+ (other stuff) +



Slope Dummy Variables

We can also use dummy variables to allowdlopeof the regression function
to vary across observations
Example: our wage equation with male/female dummies

— suppose we think theturns to education (the marginal effect of another year of
education on wage) is different for men than fomea, but that the intercepts are
the same

— we could estimate the regression model:
W = o + J1ED; + SLEDF; + ¢

— forwomen(F, = 1) the regression modelis W, = g, + (8, +/,)ED, + ¢
while for men (F, = 0) the model is W = f,+ FED, + ¢

— draw a picture

all we do is introduce a “new” independent variablgF, that is the product
of theED, variable and th&, variable (i.e.ED, timesF,

— we call this variable thmteraction of education and gender (the “Female” dummy)
of course, we can use dummies to allow the slop¢S e intercept to vary

do another example, and draw some pictures



Choosing the Independent Variables

We’ll begin our discussion of specification errbgstalking about the
choice of which independent variables to includéhenmodel

There are several kinds of errors we can make:

— we can leave out (omit) one or more “important” ipeledent variables
— ones thashould be in the model

— we can include “unimportant” (irrelevant) indepentieariables — ones
thatshould notbe in the model

— we can abuse the tools we have and choose a specifitiadit fits the
data well, or confirms what we hoped to fwdhout relying on
theory (or common sense) to specify the model

We’'ll discuss the consequences of each of theskslahspecification
error today, and one “omnibus” test we can use teati@ossible
specification error



Omitted Variables

Suppose thgue DGP is:
_ Yi = fot prXeit PoXoit g
but we incorrectly estimate the regression model:
Yi=hpo * Xt g
— example: Y is earnings, ¥ education, and Xs “work ethic” — we
don’'t observe a person’s work ethic in the data, soavet include it
In the regression model

That is, weomit the variableX, from our model
What is the consequence of this?
Does it mess up our estimatesgggbndg,?

— it definitely messes up oumterpretation of 4,. With X, in the model,
p,measures the marginal effectfon Y holding X, constant We
can’t holdX, constant if it's not in the model.

— Our estimated regression coefficients mayiased

— The estimate@; thus measures the marginal effeckobn 'Y without
holding X, constant SinceX, is in the error term, the error term will
covary withX, if X, covaries withX; .



Omitted Variables May Cause Bias
Moo 2= X) (Y=Y | XX = X)Bot B X+ B2 %48 — B B % B % E)
AE TS xRy ] [ > (% - %)
3 (% - KB % - %)+ B X~ R ve - e)]
>, (% - %)
B (%) 3 (- X)X - %)+ _ﬂ»
i Zi(xﬂ_xl)z E[/él]gbxlﬁr@[zlél]</81 :

:ﬁ1+,82E[Z'(X —X)( X, ] 2)+‘9 E)] B+ B, E[Zi(xu_;()(xz_s(z)]

(X = X)) > (% = %)
g B = g4 CMX X]
A S (%, -X T Co\ X, X]=B,+ 5, Var[X]

The estimated parameter is biased, with bias linear in the true parameter on
the left-out variable, and the covariance of the left-out variable with the
included variable.



Omitted Variables

The formula is:

E[@J =B+ Zi(xlfz_ >_< )2 CO\’{ X, Xz]

Uncorrelated missing regressors don’t cause
bias.

Missing regressors with zero coefficients don’t
cause bias.

Correlated missing regressors with nonzero
coefficients cause bias.



Omitted Variable Bias

It's easy to see why leavirk}, out of the model biases our estimatg pf

Because the true model ¥§:= B, + £, X;; + B.X, + ¢
but we estimateY, = ;" + p, X+ & B _
we can see that the error term in the mis-specifiedel ise” = X, + &

So, if X, andX, are correlated, then Assumption 3 of the CLRM dated in the
mis-specified modelX, is correlated with,"
— if X, changes, so dg, X, andY
— but all we carseeis X, andY changing — and we incorrectly attribute variation
in Y to X, that is really due tX,
That is,f, measures the effect & and (some of) the effect &, onY
Consequently, our estimate gfis biased

Back to our example: Imagine the tigig> 0 andg,> 0 so that more educated
workers earn more, and so do workers with a strongwk ethic. Imagine also
that Cov(X,X,) > 0, so that workers with a stronger work ethlso acquire more
education on average. When we leave work ethiofollie models,” measures the
effect of educatioand work ethic on earnings.

Only if we arevery lucky andCovX,,X,) = 0, does leaving, out of the model not
bias our estimate ¢,



Is the bias positive or negative?

We know tgat ing\(Xé,xz) #0, and we omiX, from the model, our
estimate of, is biased: ~
. E[A]% 6

But is the biagositive or negative? That is, can we predict whether:
E[5]>5 or E[5]<p 7

In fact, you can show that: E[ 8] = B, + B,a,

whereq, is the slope coefficient from thauxiliary regressiorof X, on X, :
Xoi = g + oy Xg; + U

whereu; is a classical error term

Note thato, has the same sign @a\X;,X,)

Back to our example: we assunigd> O (people with a stronger work ethic
earn more), and CovEeX,) > 0 (people with a stronger work ethic acquire
more education). Because Coy¥) > 0, we know that, > 0 also.

Therefore: E[B] =B+ Bty > By

so weoverestimate the effect of education on earnings —we measure the
effect of having more educatiand having a stronger work ethic.



Detecting and Correcting Omitted Variable

Bias

 How do you know you’'ve omitted an important vare®l

your best guide here is common sense and econbaocyt

before you specify and estimate the regression modelk tiand about what
should be in the model —what common sense and econonocytiell you are
important predictors of

after you specify the regression thefore you estimate it, predict the sign of
the regression coefficients. Then compare theaastgn of the estimated
regression coefficients with the predicted sighanl have the “wrong” sign,
you may have omitted something correlated with ith@¢pendent variable.

 How do you correct for omitted variable bias?

that’s “easy” — just add the omitted variable to ymodel!

of course you probably already would have dond gou could ... (like “work
ethic” — it's hard to measure)

maybe you can include a “proxy” for the omitted ahie instead — something
highly correlated with the omitted variable (ewgse number of sick days at
work as a proxy for work ethic, or an 1Q score ggaxy for intelligence)

Maybe you can correct for the bias usingtruments (more later)



Including Irrelevant Variables

What happens if we include an independent varigbdeir regression that
doesn’t belong there?

Suppose the true DGP is:
Yi= Byt B Xyt g
but we the model we estimate is: .
Yi=Bo + B X+ By Kot g
We see that the error in the mis-specified model s ¢; - 5, X,
If X, isreally irrelevant, therg,” = 0 and everything is ok:
— our estimates ¢f, andg, will be unbiased
— so will our estimate gf, (we expect it to be zero)

The only cost of including an irrelevant indeperdariable is that we lose a
degree of freedom:

— we should expect adjusted Rsquared (Rbar-squarelicrease

— we get less precise estimates of all the otheessgwn coefficients (standard errors
get biggert-stats are closer to zero so we're less likely gacteany hypothesis)



Data Mining

At the end of the day, it is up to the economeindio decide what independent
variables to include in the model

There is a temptation to choose the model thatdgst,” or that tells you what
you want to hear

Resist this temptation! Let economic theory and w@m sense be your guide!

An example of whahot to do: data mining

— we could estimate lots and lots and lots of “caatiitiregression specifications, and
choose the one whose results we like most

— the problem: you’'ll discard the specifications wh§t] coefficients have the
“wrong” sign (not wrong from a theoretical standgoiout “wrong” in the sense
that you don't like the result), and/or [2$tats are small (you discard specifications
where variables you care about are statisticafligimficant)

— so you end up with a regression model where thificeats you care about have
big t stats and the “right” sign.

— How confident can you really be of your resultaiuyhad to throw away lots of
“candidate” regressions? Do weally learn anything about the DGP?
» do your coefficientseally have the right sign?

« are the statsreally big?



Other examples of bad practice

There are lots of other ways to “cheat” when chopsirspecification

Stepwise regressionstart with a list of “candidate” independent
variables. Add them one at a time to the regressiod only keep them
in the model ifR? increases by a pre-specified amount.

— problems: ignores economic theory (and common sense); if the
Independent variables are highly correlated, itmaruce garbage

Seqguential Specification Searchstart with a “big” model (one that
iIncludes lots of independent variables). Sequawntaald or drop

Independent variables until you end up with a “daedression (one
that you like)

— problems: like data mining, given that you had to throw auatg of
“bad” regressions, how confident can you be of yasults? If you drop
variables because they have lbstats, you introduce omitted variable bias
into other coefficients if they are correlated wiitle dropped variable.
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The RESET test

A common omnibus test for specification error isrRay’s Regression Specification
Error Test (RESET). It works as follows.

Estimate the regression you want to test. Suppbsesk independent variables. Call
this model 1.

Compute the predicted valuést{at) from model 1.

Regres¥ on thek independent variablesd on the square of-hat, the cube of-
hat, etc. (afMth-order polynomial ir¥-hat. You choos#&) Call this model 2.

Compare the results of the two regressions umnkgtest. The test statistic is:
_ RS$-RS§/M
RSS/(n-k-M -1) ~ MnkeMA
If the test statistic is “big” (bigger than a @&l value) then reject the null hypothesis
of correct specification

Intuition: if the model is correctly specified, thall those functions of Y-hat
shouldn’t help to explain Y (their estimated casffits should be statistically
insignificant). The test statistic is “big” if R®e part of variation in Y that we
don’t explain) is much bigger in model 1 than matlelmeaning all those functions
of Y-hat helped a lot to explain variation in Y.

Problem: if you reject the null of correct speafion, the test doesn’t tell you what
the specification error is, or how to fix it.

This test detectiseteroskedasticitywhich may be caused by misspecification.




